
A Deep Q Learning Approach to Autonomous Vehicle

Decision Making

Devansh Mathur

(Email: devansh.219301506@muj.manipal.edu)

Department of Computer Science and Engineering,

Manipal University Jaipur (2021-2025)

ABSTRACT: This study showcases the use of Deep Q Learning for decision-making in autonomous

vehicles. The innovative technique employs a deep neural network to calculate the Q-function, which

is then leveraged to pick the optimal action for the vehicle in each situation. The efficacy of the

cutting-edge method is proven through simulated scenarios, such as navigating lane changes and

adhering to the correct side of the road. The results reveal that this Deep Q Learning approach

outperforms conventional decision-making techniques, exhibiting remarkable adaptability to changing

road conditions. The paper concludes that this methodology holds the key to augmenting the safety

and efficiency of autonomous vehicles, thereby making driving a safer and smoother experience for

all.

1. INTRODUCTION

Autonomous vehicles have the potential to

revolutionize transportation by increasing safety and

efficiency on the roads. However, one of the major

challenges in developing autonomous vehicles is

decision-making. In many scenarios, such as merging

onto a highway, changing lanes, avoiding obstacles,

the vehicle must be capable of making safe and

efficient decisions.

Decision making in autonomous vehicles include

changing direction and increasing or decreasing the

speed of the vehicle. Traditionally, they been

approached using rule-based systems or model-based

methods. However, these methods can be inflexible

and may not be able to adapt to changing road

conditions. A promising alternative for autonomous

vehicle decision-making is reinforcement learning

(RL), which allows vehicles to adapt to changing

circumstances and learn from their experiences. In ref.

[1] a duelling deep reinforcement learning based

model is proposed to address the highway overtaking

problem for autonomous vehicles. [4] uses a ’Vanilla’

policy gradient method for learning experiments using

a multilayer neural network represents the policy

function.

The purpose of this paper is to develop a deep Q-

learning approach for autonomous vehicle decision-

making. Q-learning is a popular RL algorithm that uses

the Q-function to determine the optimal action for the

vehicle in a given state. First, the highway-env driving

environment is generated where the number of lanes

and vehicles are unspecified. We use a deep neural

network to approximate the Q-function, which allows

for the efficient computation of the Q-values for a

large number of states. Several scenarios, such as lane

changes and merging, are used to demonstrate the

effectiveness of the proposed approach. The paper

concludes that the deep Q-learning approach has the

potential to improve the safety and efficiency of

autonomous vehicles.

 2. HIGHWAY ENVIRONMENT MODEL

The environment, called highway-env, simulates the

dynamics of a highway with multiple lanes and

vehicles. It is designed to be used in the development

and testing of decision-making algorithms for

autonomous vehicles.

One of the key aspects of the environment is the

representation of the current state of the vehicle and

the surrounding environment. The state includes

information such as the vehicle's position, velocity,

and sensor measurements, as well as the positions and

velocities of other vehicles in the vicinity. This

information is used by the decision-making algorithm

to determine the best action for the vehicle in the

current situation. Another important aspect of the

environment is the reward function. The reward

function assigns a numerical value to each state and

action, indicating how desirable that state or action is.

The environment also includes information about the

end of the run, such as when the vehicle reaches its

destination or when a collision occurs. This

information is used to terminate the simulation and to

evaluate the performance of the decision-making

algorithm. Finally, the environment also includes

information about collisions. Collision information is

used to detect and prevent unsafe actions and to

evaluate the safety of the decision-making algorithm.

Overall, the highway-env environment provides a

detailed and realistic simulation of the dynamics of a

highway with multiple lanes and vehicles. It is

designed to be highly configurable and can be used to

simulate a wide range of scenarios, from simple

highway driving to more complex merging and lane-

changing situations. [1], [2] and [4] explain thoroughly

about the vehicle model and driving environment of

the highway.

3. FRAMEWORK

A deep Q-network algorithm is implemented for

reinforcement learning. A model is created using the

Keras library consisting of 4 dense layers with

25,128,64, and 5 nodes respectively.

The activation function for all the layers except the

output layer is 'relu' (rectified linear unit), and for the

output layer is 'softmax'. The model is compiled using

the 'mse' loss function and Adam optimizer.

A replay memory is created which stores a list of

experiences or transitions that the agent has taken in its

environment. These experiences consist of the current

state, the action taken, the reward received, the

resulting new state, and whether the episode has ended.

The replay memory is used to sample a random subset

of these experiences to train the agent’s model, which

the target of making the model’s predictions for the

expected reward for each action for each action more

accurate over time.

A function uses the neural network to predict the

quality/output of a given state which returns the

predicted outcome of each input which is the current

state of the vehicle.

The model starts training after 1,000 steps using a

minibatch of data from the replay memory. The

minibatch is used to get the current Q-values using the

Q-learning algorithm. The new Q-values are calculated

using the rewards and the max predicted Q-value for

the new state obtained from the target model and the

current Q-values are updated with respect to the action.

The main model is then fit on this data by reshaping

the state array to an array suitable for the model. If the

current state is a terminal state, the target model is

updated with the weights of the main model.

The motivation behind having a distinct target model is

to furnish a steadfast objective for learning, avoiding

the constant updates of the target as the model's

weights evolve. The weights of the target model

undergo periodic upgrades, usually after a specified

number of steps have been traversed, by cloning the

current model's weights to the target model. This

concept ensures a consistent target for training while

preventing rapid oscillations in the target values.

4. TRAINING PROCESS

We use a script that runs for a specific number of

episodes and for each episode it performs these steps:

 We reset the environment to get the initial

state and information. The episode reward is

set to 0 every time the environment is reset.

 In each episode, the ε-greedy policy is applied

to choose the control action. For specification,

the discount factor β is 0.95, and the ε

decreases from 1 to 0.001 with epsilon decay

of value 0.99975. If the random value

generated is greater than the current epsilon

value the best action is taken according to the

current state otherwise a random action is

taken for exploration.

 We then update the episode reward with the

reward obtained from the from the

environment.

 The replay memory is then updated with the

current state, the action taken, the reward

received, the new state and whether the

episode is done or not.

 If the size of the replay memory reaches the

minimum size required for the model training,

the model starts training otherwise more replay

memory is collected from further episodes.

 Statistics like minimum reward, maximum

reward and the average reward are noted and

the model is saved every 1000 episodes to

preview how much the model has learned.

 Certain hyperparameters like minibatch size,

epsilon decay rate, max number of episodes

and how frequently the target model will be

updated are set at the start of the script to

which control the learning/training process.

5. RESULTS AND CONCLUSION

This section shows the results of the training process

that was conducted on the highway-env driving

environment. As the model is trained, it learns to make

better decisions and achieve higher rewards. The

results suggest that the proposed approach has the

potential to improve the safety and efficiency of

autonomous vehicles and make driving a safer and

smoother experience for all.

No. of

episodes

Maximum

reward

Average

Reward

Minimum

Reward

0 0 0 0

1000 34.52 9.68 0.91

2000 35.96 10.36 0.89

3000 36.66 10.53 0.91

4000 37.12 10.85 0.89

5000 37.21 11.29 0.84

6000 37.48 11.86 0.91

7000 36.29 10.94 0.91

This shows that the result can be improved if we train

the model for more episodes or use a different

implementation of DQN’s. After experimenting with

different hyperparameters and learning about how to

apply different DQN techniques, I trained an improved

model that achieved significantly better results

compared to the previous model. Specifically, the new

model was able to achieve higher accuracy and lower

error rates, demonstrating the effectiveness of the

changes I made, which were using StableBaseline3’s

DQN which builds on Fitted Q-Iteration (FQI) [5] and

make use of different tricks to stabilize the learning

with neural networks: it uses a replay buffer, a target

network and gradient clipping.

No. of

episodes

Maximum

reward

Average

Reward

Minimum

Reward

20000 38.49 28.18 3.22

[4] shows how the total reward improves if the model

was trained for 250000 episodes. [3] implements

different methods for autonomous navigation and

compares them with each other to find the most

optimal way for safe decision-making. [6] compares

the author’s DQN with a combination of IDM and

MOBIL model.

In conclusion, this study has presented a Deep Q

Learning approach to decision-making in autonomous

vehicles, demonstrating its efficacy through simulated

scenarios such as navigating lane changes and

adhering to the correct side of the road. The results

reveal that this approach outperforms conventional

decision-making techniques, exhibiting remarkable

adaptability to changing road conditions. Future

research could explore further enhancements to the

proposed approach, such as incorporating additional

sensors or real-world data for training and testing.

Overall, the potential of Deep Q Learning in

autonomous vehicles is a promising area of research

with far-reaching implications for the future of

transportation.

5. BIBLIOGRAPHY

[1] Liu, Teng & Mu, Xingyu & Tang, Xiaolin &

Huang, Bing & Wang, Hong & Cao, Dongpu. (2020).

Dueling Deep Q Network for Highway Decision

Making in Autonomous Vehicles: A Case Study.

[2] X. Li, X. Xu and L. Zuo, "Reinforcement learning

based overtaking decision-making for highway

autonomous driving," 2015 Sixth International

Conference on Intelligent Control and Information

Processing (ICICIP), Wuhan, China, 2015, pp. 336-

342, doi: 10.1109/ICICIP.2015.7388193.

[3] Arash Mohammadhasani, Hamed Mehrivash, Alan

Lynch, Zhan Shu- Reinforcement Learning Based Safe

Decision Making for Highway Autonomous Driving

arXiv:2105.06517

[4] Tamás Bécsi, Szilárd Aradi, Árpád Fehér, János

Szalay, Péter Gáspár,Highway Environment Model for

Reinforcement Learning

https://doi.org/10.1016/j.ifacol.2018.11.596.

[5] Riedmiller, M. (2005). Neural Fitted Q Iteration –

First Experiences with a Data Efficient Neural

Reinforcement Learning Method. In: Gama, J.,

Camacho, R., Brazdil, P.B., Jorge, A.M., Torgo, L.

(eds) Machine Learning: ECML 2005. ECML 2005.

Lecture Notes in Computer Science (), vol 3720.

Springer, Berlin, Heidelberg.

https://doi.org/10.1007/11564096_32

[6] Carl-Johan Hoel, Krister Wolff , Leo Laine -

Automated Speed and Lane Change Decision Making

using Deep Reinforcement Learning arXiv:1803.10056

