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ABSTRACT: This study showcases the use of Deep Q Learning for decision-making in autonomous 

vehicles. The innovative technique employs a deep neural network to calculate the Q-function, which 

is then leveraged to pick the optimal action for the vehicle in each situation. The efficacy of the 

cutting-edge method is proven through simulated scenarios, such as navigating lane changes and 

adhering to the correct side of the road. The results reveal that this Deep Q Learning approach 

outperforms conventional decision-making techniques, exhibiting remarkable adaptability to changing 

road conditions. The paper concludes that this methodology holds the key to augmenting the safety 

and efficiency of autonomous vehicles, thereby making driving a safer and smoother experience for 

all. 

 

 

1. INTRODUCTION 

Autonomous vehicles have the potential to 

revolutionize transportation by increasing safety and 

efficiency on the roads. However, one of the major 

challenges in developing autonomous vehicles is 

decision-making. In many scenarios, such as merging 

onto a highway, changing lanes, avoiding obstacles, 

the vehicle must be capable of making safe and 

efficient decisions. 

Decision making in autonomous vehicles include 

changing direction and increasing or decreasing the 

speed of the vehicle.  Traditionally, they been 

approached using rule-based systems or model-based 

methods. However, these methods can be inflexible 

and may not be able to adapt to changing road 

conditions. A promising alternative for autonomous 

vehicle decision-making is reinforcement learning 

(RL), which allows vehicles to adapt to changing 

circumstances and learn from their experiences. In ref. 

[1] a duelling deep reinforcement learning based 

model is proposed to address the highway overtaking 

problem for autonomous vehicles. [4] uses a ’Vanilla’ 

policy gradient method for learning experiments using 

a multilayer neural network represents the policy 

function. 

The purpose of this paper is to develop a deep Q-

learning approach for autonomous vehicle decision-

making. Q-learning is a popular RL algorithm that uses 

the Q-function to determine the optimal action for the 

vehicle in a given state. First, the highway-env driving 

environment is generated where the number of lanes 

and vehicles are unspecified. We use a deep neural 

network to approximate the Q-function, which allows 

for the efficient computation of the Q-values for a 

large number of states. Several scenarios, such as lane 

changes and merging, are used to demonstrate the 

effectiveness of the proposed approach. The paper 

concludes that the deep Q-learning approach has the 

potential to improve the safety and efficiency of 

autonomous vehicles. 

     2. HIGHWAY ENVIRONMENT MODEL 

The environment, called highway-env, simulates the 

dynamics of a highway with multiple lanes and 

vehicles. It is designed to be used in the development 

and testing of decision-making algorithms for 

autonomous vehicles. 

One of the key aspects of the environment is the 

representation of the current state of the vehicle and 

the surrounding environment. The state includes 



information such as the vehicle's position, velocity, 

and sensor measurements, as well as the positions and 

velocities of other vehicles in the vicinity. This 

information is used by the decision-making algorithm 

to determine the best action for the vehicle in the 

current situation. Another important aspect of the 

environment is the reward function. The reward 

function assigns a numerical value to each state and 

action, indicating how desirable that state or action is. 

The environment also includes information about the 

end of the run, such as when the vehicle reaches its 

destination or when a collision occurs. This 

information is used to terminate the simulation and to 

evaluate the performance of the decision-making 

algorithm. Finally, the environment also includes 

information about collisions. Collision information is 

used to detect and prevent unsafe actions and to 

evaluate the safety of the decision-making algorithm. 

Overall, the highway-env environment provides a 

detailed and realistic simulation of the dynamics of a 

highway with multiple lanes and vehicles. It is 

designed to be highly configurable and can be used to 

simulate a wide range of scenarios, from simple 

highway driving to more complex merging and lane-

changing situations. [1], [2] and [4] explain thoroughly 

about the vehicle model and driving environment of 

the highway.  

3. FRAMEWORK 

A deep Q-network algorithm is implemented for 

reinforcement learning. A model is created using the 

Keras library consisting of 4 dense layers with 

25,128,64, and 5 nodes respectively. 

The activation function for all the layers except the 

output layer is 'relu' (rectified linear unit), and for the 

output layer is 'softmax'. The model is compiled using 

the 'mse' loss function and Adam optimizer. 

A replay memory is created which stores a list of 

experiences or transitions that the agent has taken in its 

environment. These experiences consist of the current 

state, the action taken, the reward received, the 

resulting new state, and whether the episode has ended. 

The replay memory is used to sample a random subset 

of these experiences to train the agent’s model, which 

the target of making the model’s predictions for the 

expected reward for each action for each action more 

accurate over time.  

A function uses the neural network to predict the 

quality/output of a given state which returns the 

predicted outcome of each input which is the current 

state of the vehicle.  

The model starts training after 1,000 steps using a 

minibatch of data from the replay memory. The 

minibatch is used to get the current Q-values using the 

Q-learning algorithm. The new Q-values are calculated 

using the rewards and the max predicted Q-value for 

the new state obtained from the target model and the 

current Q-values are updated with respect to the action. 

The main model is then fit on this data by reshaping 

the state array to an array suitable for the model. If the 

current state is a terminal state, the target model is 

updated with the weights of the main model.  

The motivation behind having a distinct target model is 

to furnish a steadfast objective for learning, avoiding 

the constant updates of the target as the model's 

weights evolve. The weights of the target model 

undergo periodic upgrades, usually after a specified 

number of steps have been traversed, by cloning the 

current model's weights to the target model. This 

concept ensures a consistent target for training while 

preventing rapid oscillations in the target values. 

4. TRAINING PROCESS 

We use a script that runs for a specific number of 

episodes and for each episode it performs these steps: 

 We reset the environment to get the initial 

state and information. The episode reward is 

set to 0 every time the environment is reset. 

 In each episode, the ε-greedy policy is applied 

to choose the control action. For specification, 

the discount factor β is 0.95, and the ε 

decreases from 1 to 0.001 with epsilon decay 

of value 0.99975. If the random value 

generated is greater than the current epsilon 

value the best action is taken according to the 

current state otherwise a random action is 

taken for exploration. 

 We then update the episode reward with the 

reward obtained from the from the 

environment. 

 The replay memory is then updated with the 

current state, the action taken, the reward 

received, the new state and whether the 

episode is done or not. 

 If the size of the replay memory reaches the 

minimum size required for the model training, 

the model starts training otherwise more replay 

memory is collected from further episodes. 

 Statistics like minimum reward, maximum 

reward and the average reward are noted and 

the model is saved every 1000 episodes to 

preview how much the model has learned. 

 Certain hyperparameters like minibatch size, 

epsilon decay rate, max number of episodes 

and how frequently the target model will be 

updated are set at the start of the script to 

which control the learning/training process. 



5. RESULTS AND CONCLUSION 

This section shows the results of the training process 

that was conducted on the highway-env driving 

environment. As the model is trained, it learns to make 

better decisions and achieve higher rewards. The 

results suggest that the proposed approach has the 

potential to improve the safety and efficiency of 

autonomous vehicles and make driving a safer and 

smoother experience for all. 

 

No. of 

episodes 

Maximum 

reward 

Average 

Reward 

Minimum 

Reward 

0 0 0 0 

1000 34.52 9.68 0.91 

2000 35.96 10.36 0.89 

3000 36.66 10.53 0.91 

4000 37.12 10.85 0.89 

5000 37.21 11.29 0.84 

6000 37.48 11.86 0.91 

7000 36.29 10.94 0.91 

This shows that the result can be improved if we train 

the model for more episodes or use a different 

implementation of DQN’s. After experimenting with 

different hyperparameters and learning about how to 

apply different DQN techniques, I trained an improved 

model that achieved significantly better results 

compared to the previous model. Specifically, the new 

model was able to achieve higher accuracy and lower 

error rates, demonstrating the effectiveness of the 

changes I made, which were using StableBaseline3’s 

DQN which builds on Fitted Q-Iteration (FQI) [5] and 

make use of different tricks to stabilize the learning 

with neural networks: it uses a replay buffer, a target 

network and gradient clipping. 

No. of 

episodes 

Maximum 

reward 

Average 

Reward 

Minimum 

Reward 

20000 38.49 28.18 3.22 

[4] shows how the total reward improves if the model 

was trained for 250000 episodes. [3] implements 

different methods for autonomous navigation and 

compares them with each other to find the most 

optimal way for safe decision-making. [6] compares 

the author’s DQN with a combination of IDM and 

MOBIL model. 

In conclusion, this study has presented a Deep Q 

Learning approach to decision-making in autonomous 

vehicles, demonstrating its efficacy through simulated 

scenarios such as navigating lane changes and 

adhering to the correct side of the road. The results 

reveal that this approach outperforms conventional 

decision-making techniques, exhibiting remarkable 

adaptability to changing road conditions. Future 

research could explore further enhancements to the 

proposed approach, such as incorporating additional 

sensors or real-world data for training and testing. 

Overall, the potential of Deep Q Learning in 

autonomous vehicles is a promising area of research 

with far-reaching implications for the future of 

transportation. 
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